Directed Homotopy Theory , I

نویسنده

  • Marco GRANDIS
چکیده

Résumé. La Topologie Algébrique Dirigée est en train d'émerger, à partir de plusieurs applications. La structure de base que nous étudions ici, un espace dirigé ou d-éspace, est un éspace topologique muni d'une famille convenable de chemins dirigés. Dans ce cadre, les homotopies dirigées, généralement non réversibles, sont répresentées par des foncteurs cylindre et cocylindre. L'existence des recollements fournit une réalisation géométrique des ensembles cubiques en tant que d-éspaces, ainsi que les constructions homotopiques usuelles. On introduit la catégorie fondamentale d'un d-éspace, calculable moyennant un théorème de type van Kampen; son invariance homotopique est ramenée à l'homotopie dirigée de catégories. On pourra aussi noter que cet étude révèle de nouvelles "formes", pour les d-éspaces ainsi que pour leur modèle algébrique élémentaire, les catégories petites. Des applications de ces outils sont suggérées, dans le cas d'objects qui modèlisent une image dirigée, ou une portion d'éspace-temps, ou un système concurrent.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Research Summary

I am active in three areas of research: computational algebraic topology and data analysis, directed homotopy theory and concurrent computing, and homotopy theory, differential graded algebra and toric topology. Together with my collaborator Peter T. Kim, I am combining topological and statistical methods to aid practitioners in analyzing large, high-dimensional data sets [11, 7]. Independently...

متن کامل

The Directed Homotopy Hypothesis

The homotopy hypothesis was originally stated by Grothendieck [13] : topological spaces should be “equivalent” to (weak) ∞-groupoids, which give algebraic representatives of homotopy types. Much later, several authors developed geometrizations of computational models, e.g. for rewriting, distributed systems, (homotopy) type theory etc. But an essential feature in the work set up in concurrency ...

متن کامل

Relative Directed Homotopy Theory of Partially Ordered Spaces

Algebraic topological methods have been used successfully in concurrency theory, the domain of theoretical computer science that deals with parallel computing. L. Fajstrup, E. Goubault, and M. Raussen have introduced partially ordered spaces (pospaces) as a model for concurrent systems. In this paper it is shown that the category of pospaces under a fixed pospace is both a fibration and a cofib...

متن کامل

Modelling fundamental 2-categories for directed homotopy (*)

Directed Algebraic Topology is a recent field, deeply linked with ordinary and higher dimensional Category Theory. A 'directed space', e.g. an ordered topological space, has directed homotopies (generally non reversible) and fundamental n-categories (replacing the fundamental ngroupoids of the classical case). Finding a simple model of the latter is a non-trivial problem, whose solution gives r...

متن کامل

Homotopy equivalence of isospectral graphs

In previous work we defined a Quillen model structure, determined by cycles, on the category Gph of directed graphs. In this paper we give a complete description of the homotopy category of graphs associated to our model structure. We endow the categories of N-sets and Z-sets with related model structures, and show that their homotopy categories are Quillen equivalent to the homotopy category H...

متن کامل

Quotient Models of a Category up to Directed Homotopy

Directed Algebraic Topology is a recent field, deeply linked with ordinary and higher dimensional Category Theory. A ‘directed space’, e.g. an ordered topological space, has directed homotopies (which are generally non reversible) and a fundamental category (replacing the fundamental groupoid of the classical case). Finding a simple possibly finite model of the latter is a non-trivial problem, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003